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Abstract. In random metal-dielectric composites near the percolation threshold,
surface plasmons are localized in small nanometer-sized areas, hot spots, where the
local field can exceed the applied field by several orders of magnitude. The high lo-
cal fields result in dramatic enhancement of optical responses, especially, nonlinear
ones. The local-field distributions and enhanced optical nonlinearities are described
using scale renormalization. A theory predicts that the local fields consist of spa-
tially separated clusters of sharp peaks representing localized surface plasmons.
Experimental observations are in good accord with theoretical predictions. The lo-
calization of plasmons maps the Anderson localization problem described by the
random Hamiltonian with both on- and off-diagonal disorder. The feasibility of
nonlinear surface-enhanced spectroscopy of single molecules and nanocrystals on
percolation films is shown.

1 Introduction

Metal-dielectric composites attract much attention because of their unique
optical properties, which are significantly different from those of constituents
forming the composite [1,2,3]. Semicontinuous metal films can be produced
by thermal evaporation or sputtering of metal onto an insulating substrate.
In the growing process, first, small metallic grains are formed on the sub-
strate. The typical size a of a metal grain is about 5 to 50nm. As the film
grows, the metal filling factor increases, and coalescence occurs, so that ir-
regularly shaped self-similar clusters (fractals) are formed on the substrate.
The concept of scale-invariance (fractality) plays an important role in the
description of various properties of percolation systems [2,4]. The sizes of the
fractal structures diverge in the vicinity of the percolation threshold, where
an “infinite” percolation cluster of metal is eventually formed, representing
a continuous conducting path between the ends of a sample. At the percola-
tion threshold, the metal-insulator transition occurs in the system. At higher
surface coverage, the film is mostly metallic, with voids of irregular shape.
With further coverage increase, the film becomes uniform.
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In random metal-dielectric films, surface plasmon excitations are localized
in small nanometer-scale areas referred to as “hot spots” [2,5,6]. As discussed
below, the localization can be attributed to the Anderson localization of
plasmons in semicontinuous metal films near a percolation threshold (in this
case, referred to as percolation films). Electromagnetic energy is accumulated
in the hot spots associated with localized plasmons, leading to local fields
that can exceed the intensity of the applied field by four to five orders of
magnitude. The high local fields in the hot spots also result in dramatically
enhanced nonlinear optical responses proportional to the local field raised to
a power greater than one.

Local electromagnetic field fluctuations and related enhancement of non-
linear optical phenomena in metal-dielectric composites near percolation
threshold (percolation composites) have recently become an area of active
studies because of many fundamental problems involved and high potential
for various applications. Percolation systems are very sensitive to the external
electrical field since their transport and optical properties are determined by a
rather sparse network of conducting channels and the field concentrates in the
“weak™ points of the channels. Therefore, composite materials can have much
larger nonlinear susceptibilities at zero and finite frequencies than those ofits
constituents. The distinguished feature of percolation composites, to amplify
nonlinearities of its components, was recognized very early [7,8,9,10,11,12],
and nonlinear conductivities and susceptibilities have been intensively stud-
ied during the last decade (see, for example, [1,13,14,15,16,17]).

Here, we consider relatively weak nonlinearities when the conductivity
o(E) can be expanded in a power series of the applied electrical field E and
the leading term, i.e., the linear conductivity ¢(1), is much larger than others.
This is typical for various nonlinearities in the optical and infrared spectral
ranges considered here. Even weak nonlinearities lead to qualitatively new
physical effects. For example, generation of higher harmonics can be much en-
hanced in percolation composites, and bistable behavior of the effective con-
ductivity can occur when the conductivity switches between two stable values,
etc. [18]. We note that the “languages” of nonlinear currents/conductivities
and nonlinear polarizations/susceptibilities (or dielectric constants) are com-
pletely equivalent, and they will be used here interchangeably.

Local-field fluctuations can be strongly enhanced in the optical and in-
frared spectral ranges for a composite material containing metal particles
that are characterized by a dielectric constant with negative real and small
imaginary parts. Then, the enhancement is due to the surface plasmon reso-
nance in metallic granules and their clusters [1,14,19,20]. The strong fluctua-
tions of the local electrical field lead to the enhancement of various nonlinear
effects. Nonlinear percolation composites are potentially of great practical
importance [21] as media with intensity-dependent dielectric functions and,
in particular, as nonlinear filters and optical bistable elements. The optical

Theory of Nonlinear Optical Responses in Metal-Dielectric Composites 171

response of nonlinear composites can be tuned by controlling the volume
fraction and morphology of the constituents.

The theory of nonlinear optical processes in metal-dielectric composites is
based on the fact that the problem of optical excitations in percolation com-
posites mathematically maps the Anderson transition problem. This allowed
us to predict the localization of plasmon excitations in percolation metal—
dielectric composites and describe in detail the localization pattern. In areas
where the resonant plasmons are localized, “hot spots,” a high concentration
of electromagnetic energy results in very large local fields and dramatic en-
hancement of optical responses. We show that the plasmon eigenstates are
localized on a scale much smaller than the wavelength of the incident light.
Plasmon eigenstates with eigenvalues close to zero (resonant modes) are ex-
cited most efficiently by an external field. Since the eigenstates are localized
and only a small portion of them are excited by the incident beam, the
overlapping of the eigenstates can typically be neglected, that significantly
simplifies theoretical consideration, and allows one to obtain relatively sim-
ple expressions for enhancements of linear and nonlinear optical responses.
It is important to stress again that the plasmon localization length is much
smaller than the light wavelength; in that sense, the predicted subwavelength
localization of plasmons differs quite from the well-known localization of light
due to strong scattering in a random homogeneous medium [23].

We also note that a developed scaling theory of optical nonlinearities
in percolation composites opens new means to study the classical Anderson
problem, taking advantage of the unique characteristics of laser radiation,
namely, its coherence and high intensity.

In spite of major efforts, most of the theoretical considerations of lo-
cal optical fields in percolation composites are restricted to mean-field the-
ories and computer simulations (for references, see [15,16,17]). The effec-
tive medium theory [24] that has the virtue of relative mathematical and
conceptual simplicity was extended for the nonlinear response of percolat-
ing composites [1,13,25,26,27,28,29,30,31] and fractal clusters [28]. For linear
problems, predictions of the effective medium theory are usually sensible
physically and offer quick insight into problems that are difficult to attack
by other means {1]. The effective medium theory, however, has disadvantages
typical of all mean-field theories, namely, it diminishes the role of fluctua-
tions in a system. In this approach, it is assumed that local electrical fields
are the same in the volume occupied by each component of a composite. For
example, the effective medium theory predicts that the local electrical field
should be the same in all metal grains regardless of their local arrangement
in a metal-dielectric composite. Therefore, the local field is predicted to be
almost uniform, in particular, in metal-dielectric composites near percola-
tion. This is, of course, counterintuitive since percolation represents a phase
transition, where according to the basic principles, fluctuations play a crucial
role and determine a system’s physical properties. Moreover, in the optical
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spectral range, the fluctuations are anticipated to be dramatically enhanced
because of the resonance with the sp modes of a composite.

We developed a rather effective numerical method [32] and performed
comprehensive simulations of the local-field distribution and various nonlin-
ear effects in two-dimensional percolation composites - that were random
metal-dielectric films [15,33,34,35]. The effective medium approach fails to
explain the results of the computer simulations performed. It appears that
electrical fields in such films consist of strongly localized sharp peaks result-
ing in very inhomogeneous spatial distributions of the local fields. In peaks
(“hot” spots), the local fields exceed the applied field by several orders of
magnitudes. These peaks are localized in nanometer-size areas and can be
associated with the sp modes of metal clusters in a semicontinuous metal
film. The peak distribution is not random but appears to be spatially corre-
lated and organized in some chains. The length of the chains and the average
distance between them increase toward the infrared part of the spectrum.

Nonlinear optical effects depend not only on the magnitude of the field
but also on its phase, so that a nonlinear signal, in general, is proportional
to (|E(r)|*E™(r)). In this contribution we describe a scaling theory for en-
hancement of arbitrary nonlinear optical process (for both 2d and 3d perco-
lation composites) and show that enhancement differs significantly for non-
linear optical processes that include photon subtraction (annihilation) and
for those that do not. Photon subtraction implies that the corresponding
field amplitude in the expression for nonlinear polarization (current) P
is complex conjugated [22]. For example, the optical process known as co-
herent anti-Stokes Raman scattering is driven by the nonlinear polariza-
tion P® « E%(w;)E*(w;) which results in generation of a wave at the
frequency wy = 2wy — wy, ie., in one elementary act of this process, the
wg photon is subtracted (annihilated); the corresponding amplitude E(ws) in
the expression for P®) is complex conjugated.

In this review, we develop a simple scaling approach explaining extremely
inhomogeneous field distribution and giant optical nonlinearities of metal—-
dielectric composites for an arbitrary optical process. We also show the great
potential of percolation films for surface-enhanced local spectroscopy of single
molecules and nanocrystals.

2 Percolation and Anderson Transition Problem

We consider here the general case of a three-dimensional random composite.
As mentioned, the typical size a of the metal grains in percolation nanocom-
posites is of the order of 10 nm, i.e., much smaller than the wavelength X in
the visible and infrared spectral ranges, so that we can introduce a potential
¢(r) for the local electrical field. The field distribution problem reduces to
the solution of the equation representing the current conservation law:

<.+A5ﬁ|<@?v+maxaano“ (1)
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where E(©) = Ej is the applied field and o(r) is the local conductivity that
takes om and oq values for the metal and dielectric, respectively. In the dis-
cretized form, this relation acquires the form of Kirchhoff’s equations defined,
for example, on a cubic lattice [1].

We can write Kirchhoff’s equations in terms of the local dielectric con-
stant ¢ = (47i/w)o, rather than conductivity o. We assume that the external
electrical field E(© is directed, say, along the z axis. Thus, in the discretized
form, (1) is equivalent to the following set of equations:

Mm&. (pi — @5+ Ey5) =0, (2)
J

where ¢; and ¢; are the electrical potentials determined at the sites of the
cubic lattice (or the square lattice, for a two-dimensional system); the summa-
tion is over the six nearest neighbors of the site 7. The electromotive force E;;
takes the value E(®aq for the bond (i5) aligned in the positive z direction,
where qg is the spatial period of the cubic lattice (which can coincide with the
size grain a}. For the bond (ij) aligned in the —z direction, the electromotive
force E,; takes the value ~FE®gqq: for the other four bonds related to site 1,
Ei; = 0. The permittivities €;; take values €y and eq, with probabilities p
and 1 —p, respectively. Thus a percolation composite is modeled by a random
network, including the electromotive forces E;; that represent the external
field.

For simplicity, we can assume that the cubic lattice has a very large
but finite number of sites N and rewrite (2) in the matrix form with the

“interaction matrix” H defined in terms of the local dielectric constants:
Ho=¢, (3)

where @ is the vector of the local potentials @ = {¢1, ¢2,. .., ¢n} determined

at IV sites of the lattice. Vector £ also has N components & = 3, €;; Eij, as

follows from (2). The N x N matrix H has off-diagonal elements Hij = —¢y5
and diagonal elements H;; = MUQ. €;; (j refers to the nearest neighbors of
the site ¢). The off-diagonal elements H;; randomly take values eg > 0 and
em = (—1 +ik) |el,|, where the loss factor kK = €/ / |eL,| is small in the optical
and infrared spectral ranges, i.e., K < 1. The diagonal elements H;; are also
random numbers distributed between 2de,, and 2deq, where 2d is the number
of nearest neighbors in the lattice for a d-dimensional system.

It is important to note that the matrix H is similar to the quantum-
mechanical Hamiltonian for Anderson’s transition problem with both on- and
off-diagonal correlated disorder [36,37]. We will refer hereafter to operator H
as Kirchhoff’s Hamiltonian (KH). In the approach considered here, the field
distribution problem, i.e., the problem of finding a solution to the system
of linear equations (2), can be translated into the problem of finding the

-~

eigenmodes of KH H.
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Suppose we have found the eigenvalues A,, for fl. In the optical and in-
frared spectral ranges, the real part €/, of the metal dielectric function e, is
negative (e/, < 0), whereas the permittivity of a dielectric host is positive
(ea > 0); as mentioned, the loss factor is small, k = €” /|¢/ | < 1. There-
fore, the manifold of the KH eigenvalues A, contains the eigenvalues that
have their real parts equal (or close) to zero with very small imaginary parts
(k < 1). Then the eigenstates that correspond to the eigenvalues (A, /em| < 1
are strongly excited by the external field and are seen as giant field Aluctua-
tions, representing nonuniform plasmon resonances of a percolation system.

The localized optical excitations can be thought of as field peaks sepa-
rated, on average, by the distance & o« a (N/ 3%\ 4 where n is the number of
the resonant KH eigenmodes excited by the external field and N is the total
number of the eigenstates. In the limit « < 1, only a small part n ~ &N of
the eigenstates is effectively excited by the external field. Therefore, the dis-
tance &, which we call the field correlation length, is large: & /a o 67/ > 1.

According to the one-parameter scaling theory, the eigenstates ¥, are, it
is thought, all localized for the two-dimensional case (see, however, the dis-
cussion in [38,39]). On the other hand, it was shown that there is a transition
from chaotic eigenstates [40,41] to the strongly localized eigenstates in the
two-dimensional Anderson problem [42] with an intermediate crossover re-
gion. The KH also has strong off-diagonal disorder, (Hj;) = 0 (i # j), which
usually favors localization [43,44]. Our conjecture is that the eigenstates ¥,
are localized, at least those with A, ~ 0, in a two-dimensional system. (We
cannot, however, rule out the possibility of inhomogeneous localization simi-
lar to that obtained for fractals [45] or power-law localization [36,46].)

The Anderson transition in a three-dimensional system is less understood
and little is known about the eigenfunctions [36,47]. We conjecture that the
eigenstates with A, ~ 0 are also localized in the three-dimensional case.

3 Scaling in Local-Field Distribution

For the films concerned, gaps between metal grains are filled by a dielectric
substrate, so that a semicontinuous metal film can be thought of as a 2d
array of metal and dielectric grains randomly distributed over the plane. The
dielectric constant of a metal can be approximated by the Drude formula

em = & — (Wp/w)?/(1 + iw, ), (4)

where €, is the interband contribution, wy is the plasma frequency, and w,
is the plasmon relaxation rate (w, < wp). In the high-frequency range con-
sidered here, losses in metal grains are relatively small, w, < w. There-
fore, the real part ¢, of the metal dielectric function €y, is much larger (in

modulus) than the imaginary part €/, i.e., the loss parameter x is small,
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kK =¢r/len| = wr/w < 1. We note that €, is negative for frequencies w less
than the renormalized plasma frequency,

Fp = wp/\/ep - (5)

It is instructive to consider first the special case of —¢l, = €4, where
em = €, + i€l and eq are the dielectric constants of the metallic and di-
electric components, respectively. The condition —e/ = €4 corresponds to
the resonance of individual metal particles in a dielectric host in the two-
dimensional case. For simplicity, we also set —e, = €q = 1, which can always
be done by simply renormalizing the corresponding quantities.

It can be shown that the field distribution on a percolation film at —e,, =
eq = 1 formally maps the Anderson metal-insulator transition problem [2,5,6].
In accord with this, the field potential representing the plasmon modes of a
percolation film must be characterized by the same spatial distribution as
the electron wave function in the Anderson transition problem. Such mathe-
matical equivalence of the two physically different problems stems from the
fact that the current conservation law for a percolation film acquires (when
written in the discretized form) the form of Kirchhoff’s equations, which, in
turn, (when written in the matrix form) become identical to the equations
describing the Anderson transition problem [6]. The corresponding Kirchhoff
Hamiltonian for the field distribution problem is given by a matrix with ran-
dom elements which can be expressed in terms of the dielectric constants for
metal and dielectric bonds of the lattice representing the film. In this matrix,
the values €, = —1 and ¢q = 1 appear in the matrix elements with prob-
ability p and (1 — p), respectively (where p is the metal filling factor given
at percolation by p = p., with p. = 1/2 for a self-dual system). In such a
form, the Kirchhoff Hamiltonian is characterized by a random matrix, similar
to that in the Anderson transition problem, with both on- and off-diagonal
disorder. Based on this mathematical equivalence, it was concluded in [2,5,6]
that the plasmons in a percolation film can experience Anderson-type local-
ization within small areas, and the size is given by the Anderson length £4.
For most localized plasmon modes, £4 can be as small as one grain a.

Below, we develop a simple scaling approach that explains the nontrivial
field distribution predicted and observed in percolation films. This scale-
renormalization method supports the main conclusions of a rigorous (but
tedious) theory of [2,5,6] and has the virtue of being simple and clear, which
is important for understanding and interpreting future experiments.

First, we estimate the field in the hot spots for —e/, = ¢4. Hereafter, we
use the sign * (not to be confused with complex conjugation) to indicate that
the quantity concerned is given for —e/ = eq (with eq ~ 1); for £a, however,
we omit this sign since this quantity always refers to —el, = eq.

Since €], is negative at optical frequencies, metal particles can be roughly
thought of as inductor-resistor (L—R) elements, whereas the dielectric gaps
between the particles can be treated as capacitive (C) elements. Then, the
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condition €/, = —eq means that the conductivities of the L-R and C elements
are equal in magnitude and opposite in sign, i.e., there is a resonance in the
equivalent L-R—C circuit corresponding to individual particles.

The local field in resonating particles is enhanced by the resonance quality
factor () which is the inverse of the loss factor, Q@ = « !, so that

E;, ~ Eox™" (a/é4)", (6)

where the factor (a/£5)” takes into account that the resonating mode is lo-
calized within £5. The resonant modes excited by a monochromatic light
represent only the fraction x of all modes so that the average distance (re-
ferred to as the field correlation length £¥) between the field peaks is given
by

& ~a/st? > Ea. (7)

Note that the field peaks associated with the resonance plasmon modes
represent in fact the normal modes, with the near-zero eigennumbers, of
Kirchhoff’s Hamiltonian discussed above [2,6]. These modes are strongly ex-
cited by the applied field and seen as giant field fluctuations on the surface
of the film.

Now we turn to the important case of “high contrast,” with |ey| > €q4, that
corresponds to the long-wavelength part of the spectrum where the local-field
enhancement can be especially strong. From the basic principles of Anderson
localization [2], it is clear that a higher contrast favors localization, so that
plasmon modes are expected to be localized in this case as well.

It is clear that at ey | 3> €4, individual metal particles cannot resonate. We
can renormalize, however, the high-contrast system to the case of —¢/, = eq4
considered above by formally “dividing” the film into square elements of the
special resonant size

L = a{fen) \avi () (8)

and considering these squares as new renormalized elements of the film. Re-
ally, using the known scaling dependences [1,4] for “metal” and “dielectric”
squares of size [ (which, respectively, do or do not contain a metal continuous
path through the square):

em(l) ~ (1/a)" " em 9)
and
ea(l) ~ (I/a)"eq, (10)

we find that the dielectric constants of the renormalized elements with the
size | = [, are equal in magnitude and opposite in sign,

— em(ly) = eally) . (11)
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Thus, for these renormalized elements of size [, there is a resonance similar
to the resonance in the R—L-C circuit describing individual metal particles in
a dielectric host. In this case, however, some effective (renormalized) R-L-C
circuits represent resonating square elements.

For a two-dimensional percolation film, the critical exponents are given
by t ® s &= v = 4/3; they represent the percolation critical exponents
for conductivity, dielectric constant, and percolation correlation length, re-
spectively [1,4]. Below, for simplicity we consider the two-dimensional case
(d = 2), though all results can be easily generalized for arbitrary d.

In the renormalized system, the estimate obtained above for field peaks
still holds. Since the electrical field and eigenfunction both scale as I, we
arrive at the conclusion that in the high-contrast system (with |eyn| > eq),
the field maxima can be estimated as

By ~ (L/a) By ~ @ozlpﬁa\mv?\m\yvm ~ Eor™! Q~,\m>vw

~ Bo(a/én)len*? [ (e el) (12)
The light-induced eigenmodes in the high-contrast system are separated, on
average, by the distance &, that exceeds the mode separation & at €m = —€q

by factor l,/a,

bo ~ (1,/a)EE ~ 1, /K ~ alem|/ /€l ea. (13)

For a Drude metal at w < wp, the local field peaks, according to (4) and
(12), are given by

Bw/Eo ~ €5 (a/en)? (wp/wr), (14)

and the distance between the excited modes (13) is estimated as

&e ~ awp/\/€qwws . (15)

Figure 1 illustrates, as described above, the renormalization of the field
peaks and their spatial separations at the transition between the reference
(renormalized) system with —ey = €4 = 1 and the high-contrast system of
lem/€al > 1. ,

As follows from the figure, the largest local fields of amplitude E\, result
from excitation of the resonant clusters of size I;,. At —¢y, = €4 =1, I, = a (8),
as in the reference system. With increasing wavelength (and thus the contrast
lem|/€a), the resonant size [, and the distance £, between the resonating
modes both increase.

The above results have a clear physical interpretation and can also be
obtained from the following complementary considerations. Let us consider
two metal clusters, with conductance X, = —i{a/4m)wen (1}, separated by a
dielectric gap, with conductance Xy = —i(a/4m)weq(l), as shown in Fig. 2a.
The clusters and the gap are both of size [, and €, () and eq(l) are defined
in (9) and (10), respectively. The equivalent conductance X, for Xy, and Xy
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Fig. 1. Renormalization of the field distribution at the transition between the ref-
erence case with —em/€a = 1 and the high-contrast case of —em/eq > 1

in series is given by X = X2 \ (X + X4}, and the current j through the
system is § = 3.Epl. The local field, however, is strongly inhomogeneous,
and the largest field occurs at the point of the closest approach between the
clusters, where the separation between clusters can be as small as a; then,

the maximum field E,, is estimated as By = (j/Za)/a ~ NOQ\QV\T +

Q\@vﬁtv\:mm\mL [where we used (9) and (10)]. For the “resonant” size [ = I,
the real part of the denominator in the expression for Fy, becomes zero,
and the field E,, reaches its maximum, where it is estimated as Ey,/FEq ~
k(I /a).

In the estimate obtained, we assumed, for simplicity, that £o ~ a and,
in this limit, we reproduced the result (12). To obtain the “extra factor”
(a/€4)? of (12), we have to take into account that the localization area for
the field is £a rather than a, so that the field peak is “spread over” for the
distance 4. With this correction, we immediately arrive at formula (12).

It is clear that for any frequency of the applied field w, there are always
resonant clusters of the size (8)

= 1) ~ e/ P, (1)

where the local field reaches its maximum FE.,. The resonant size [, increases
with the wavelength. It is important that at percolation, the system is scale-
invariant so that all possible sizes needed for resonant excitation are present,
as schematically illustrated in Fig. 1b. At some large wavelength, only large
clusters of appropriate sizes resonate, leading to field peaks at the points of
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closest approach between the metal clusters; with the decrease of the wave-
length of the applied field, the smaller clusters begin to resonate, whereas the
larger ones (as well as the smaller ones) are off the resonance, as shown in
Fig. 1b.

‘We can also estimate the number n(l;) of field peaks within one resonating
square of size ;. In the high-contrast system (with |em/eqa] 3> 1), each field
maximum of the renormalized system (with |eym/eqa| = 1) splits into n(l,)
peaks of E,, amplitude located along a dielectric gap in the “dielectric” square
of size I, (Figs. 1 and 2). The gap “area” scales as the capacitance of the
dielectric gap, and so must the number of field peaks in the resonance square.
Therefore, we estimate that

n(l) o (I:/a)*/*». (17)
In accordance with the above considerations, the average (over the film

surface) intensity of the local field is enhanced as

E 2

Eo

~ (B[ Bon(le) (€ /6 ~ (0/€8)” lenl®? [(chea),  (19)

where we used (8), (13), and (17) and the critical exponents t = s = v = 4/3.

In Fig. 3, we also show the simulated field distribution on a silver—glass
percolation film at two different wavelengths. In accordance with the con-
sideration above, we see that the local-field distribution consists of clusters
of very sharp peaks where the spatial separation increases with the wave-
length. A qualitatively similar field distribution was detected in recent ex-
periments [5] using scanning near-field optical microscopy.

Thus, using simple arguments based on the scaling dependences of e,,(l)
and €q(1) on ! and the resonance condition —en(l;) = €4(l:), one can define
the renormalization procedure that allows one to rescale the “high-contrast”
system to the renormalized one with —e, = eq = 1.

Below we show that the enhanced local field in the hot spots results in
giant enhancement of nonlinear optical responses of semicontinuous films.

Amv Iy

¥y l

l

Fig. 2. (a) A typical element of a percolation film consisting of two conducting
metal clusters with a dielectric gap in between. (b) Different resonating elements
of a percolation film at different wavelengths
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(a)

3.0x10*

1.0x10*

Fig. 3. Local-field distribution on a silver-glass percolation film at different wave-
lengths: (a) A = 1.5 um and (b) A = 10 um
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4 Enhanced Optical Nonlinearities

In general, we can define the high-order field moments as
1
Mym= s | |[E@)|"E™(r) d 19
= SEpTE | 1B @ B (6 dr, (19)

where, as above, Fy is the amplitude of the external field and E(r) is the
local field [note that E2 (r) = E (r) - E (r)]. The integration is over the entire
surface S of the film.

The high-order field moment Moy, , o< E¥+™E** represents a nonlinear
optical process in which, in one elementary act, k& + m photons are added
and k photons are subtracted [22] because the complex conjugated field in
the general expression for nonlinear polarization implies photon subtraction,
so that the corresponding frequency enters the nonlinear susceptibility with
a minus sign [22]. As first shown in [6], enhancement is significantly different
for nonlinear processes with photon subtraction in comparison with those
where all photons enter the nonlinear susceptibility with a plus sign. The
enhancement of Kerr optical nonlinearity Gx (see below) is equal to Ms o,
second-harmonic generation (SHG) and third-harmonic generation (THG)
enhancements are given by |Mpo|?> and | Mo 3|?, respectively, and surface-
enhanced Raman scattering (SERS) is represented by My o.

The high-order moments of the local field in d = 2 percolation films can be
estimated as My, m ~ (Em/Eo)" ™ n(l;)(éa/&:)?. Using the scaling formulas
(8)~(17) for the field distribution, we obtain the following estimate for the
field moments:

n+m-—1

N_B n+m Qn\gvm\w _mE_w\w
“ Agv &/en)”  \(€a/a)2ey%el, .

for n+m > 1 and n > 0 (where we took into account that for two-dimensional
percolation composites, the critical exponents are given by ¢t & ¢ & v £ 4/3).
Since |em| 3> eq and the ratio lem| /€l > 1, the moments of the local field
are very large, i.e., My >> 1, in the visible and infrared spectral ranges. Note
that the first moment, Mp 1 ~ 1, corresponds to the equation (E (r)) = Eq.
Now consider the moments M, , for n = 0, i.e., Mo,m = (E™ (r)) / (Eo)™.
In the renormalized system where e (I:)/€q(l;) =2 —1 + ik, the field distribu-
tion coincides with the field distribution in the system with eq >~ —€/ ~ 1. In
that system, field peaks £, differ in phase and cancel each other out, result-
ing in the moment Mg ,,, ~ O (1) [6]. In transition to the original system, the
peaks increase by the factor {;, leading to an increase in the moment Mg p,.
Then, using (8), (13), and (17), we obtain the following equation for the

moment:

BQH.V y m: _m:.._?:lwv\w
Mom ~ M, (Le/a)™ | —" | ~ &(le/a)" 2T/~ B2 (21)
(&e/a)? e{mH
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for m > 1 (where again we used the critical exponents £ & s = y 2 4/3).
For a Drude metal (4) and w < wp, from (20) and (21), we obtain

.NE‘S._S ~ mMHI3|3v\MAQ\m>VmA3+3IHV AEU\Eﬂvﬁn_.SIH v AMMV

forn+m >1and n >0, and

3|H8ﬁ

My, ~o /2 [ “2

m~ €g o ) (23)
for m > 1.

Note that for all moments, the maximum in (22) and (23) is approximately
the same (if €5 ~ a), so that

n+m—1
M e () (4

W

However, in the spectral range wp, > w > w,, moments My, gradually
increase with wavelength, and the maximum is reached only at w ~ w;,
whereas the moments M, ., (with n > 1) reach this maximum at much
shorter wavelengths (roughly, at w ~ @,/2) and remain almost constant in
the indicated spectral interval. This conclusion is supported by the numerical
simulations for the silver—glass percolation films shown in Fig. 4; one can see
that the above scaling formulas are in good accord with the simulations.
For silver—glass percolation films, with wp = 9.1eV and w,; = 0.021eV, we
find that the average field enhancement can be as large as Grg ~ My ~ 107
for Raman scattering (see also Fig. 4), and as large as Grwm ~ | Mz 2|? ~ 10
for degenerate four-wave mixing. According to Fig. 3, the local-field intensity
in the hot spots can approach the magnitude 10° so that the local enhance-
ment of nonlinear optical responses can be truly gigantic, up to 109, for Ra-
man scattering, and up to 10%°, for four-wave mixing signals. With this level

M, k,m
105 |

10% |

10% |

L A (um)

0.1 1.0 10.0 100

Fig. 4. Average enhancement of the high-order field moments My, in a percolation
silver-glass two-dimensional film as a function of wavelength: M, ¢ [scaling formula
(20) ~ upper solid line and numerical simulations ~ *]; Mo 4 [scaling formula (21)
— upper dashed line]; Mao [scaling formula (20) - lower solid line and numerical
simulations — T]; Mo [scaling formula (21) — lower dashed line and numerical
simulations — 9]
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of enhancement, one can perform nonlinear spectroscopy of single molecules
and nanocrystals. It is important that the enhancement be obtained in the
huge spectral range, from the near-UV to the far-infrared, which is a major
virtue for spectroscopic studies of different molecules and nanocrystals. We
also note that the field enhancement provided by semicontinuous metal films
can be used for various photobiological and photochemical processes.
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Abstract. The surfaces of percolating random 2-D metal-dielectric films consist of
several spectral resonances, which have been calculated and afterward observed by
near-field optical microscopy. These films show anomalous optical properties which
are investigated in the first section. Nonlinear electrical and optical properties of
metal-dielectric film percolation composites, though recognized very early, were not
well understood. It is only recently that calculation of local fields in semicontinuous
films allows us to define the enhancement factors of optical nonlinearities. These
calculations are outlined from basic principles in the second section and compared
with experimental results. An insightful approach to the same problem is to use
a network description to represent the random system and discretize the equations
satisfied by the scalar potential of the electrical field. We recall in the third sec-
tion how such discretization leads to a Hamiltonian which is paradigmatic in the
theory of Anderson localization. The imaging and spectroscopy of localized optical
excitation in gold-on-glass percolation films was performed using near-field optical
microscopy (SNOM), and the fourth section recalls the basic features of the exper-
imental technique and describes the first experimental observation of “hot spots”
in a nanometer-scale area.

1 Introduction

In a significantly wide range close to the percolation second-order transition,
granular metal thin films are known to manifest electromagnetic properties
that are absent for both components: bulk metal and dielectric.
Two-dimensional metal-dielectric films consist of a planar distribution of
nanometer-sized metal grains randomly distributed on the surface of an in-
sulating substrate; each metallic grain has about the same height (thickness)
above the substrate. If the edges do not dominate the shape of the grains,
we can assume that the metallic grains are not too far from cylinders, and
then the ratio between the metal covered surface and the total surface of the

V. M. Shalaev (Ed.): Optical Properties of Nanostructured Random Media,
Topics Appl. Phys. 82, 185-213 (2002)



